
REFERENCE MANUAL

COMPIIXR PACKAGE

Butler W. Lampson

University of California, Berkeley

Document No. 30.60.70

Issued March 18, 1966

Revised May 18, 1966

Contract SD- 185

Office of Secretary of Defense

Advanced Research Projects Agency

Washington 3, D.C.

30.60.70
May 18. 1966

TABLF: OF CONTENTS

1.0

2.0

3.0

4.0

5 . 0

6.0
7.0
8.0

9.0
10.0

Int roduc t ion .
Storage Allocation .
Other Parameters .
3.1 Lis t ing .
3.2 In i t i a l i za t ion .
3.3 Pre-pass .
3.4 Errors .
3.5 TheExecutive .
3.6 Miscellaneous .
3.7 RlPAddresses .
3.8 FOP Transfer Vector
Syntax Analysis and Code Generation
4 . 1 Recognizers and Comparers
4.2 Compiling Code .
4.3 The Compiler LOOP
4.4 Compiler Errors .
Symbol Tables and I n i t i a l i z a t i o n
5 . 1 Structure of the Symbol Table
5 . 2 Lookup and Insertion Routines
5 . 3 In i t i a l i za t ion .
Input .
output .
Pre-pass .
Panic Control .
The Executive .

CP Parameters APPENDIX A
APPENDIX B Symbols Provided by CP

.1-1

. 2 - 1

. 3 - 1

. 3 - 1

. 3 - 1

. 3 - 2
* 3 - 3
* 3 - 3
f 3 - 3
* 3 - 3
* 3 - 4
. 4 - 1
. 4 - 1
. 4 - 2
. 4 - 4

30.60~70
May 18, 1966

1-1
1.0 Introduction

The compiler package (CP) is a collection of useful POPS, subroutines and

conventions which provide a convenient framework f o r constructing compilers for

a wide c l a s s of languages.

input medium, w i t h the faci l i t ies of the &FD l i n e e d i t if the input device

happens t o be the teletype.

an in t e rna l representation i n which each s ignif icant consti tuent of the

A subroutine is provided t o read a l i n e fram any

A second routine converts t h e source l i n e into

source l i n e has been replaced by an integer,

recursive c a l l s on recognizers which attempt t o analyze the l i ne .

code can be put onto a l is t of compiled instructions; inser t ions are possible

POPS are available t o m a k e

Finally,

at any point on the l ist , and when the statement is completely analyzed the

compiled code can be transcribed in to core and, i f desired, printed out i n

symbolic form.

correction, control of panics, i n i t i a l i za t ion , pagination and a l imi ted amount

of control over three word/cell forward-chained l ists which are used by the

A collection of miscellaneous routines provide f o r e r ro r

code generator.

CP also provides t h e necessary machinery fo r preserving t h e source

language of the user 's program and for interact ively a l te r ing both source

and compiled code.

t o t h a t of QED.

The basic command language f o r t h i s purpose i s ident ica l

The user may extend the l is t of commands a t h i s discret ion.

CP includes the following sections:

1) The standard macro package. This i s a l a rge collection of macros

which are used i n the rest of the package.

needed i n the user 's program, although any user may of course take

These macros are not

them over i f he f inds them convenient.

2) The user macro package. These macros provide convenient ways of

cal l ing f o r recognizers and code generation. Symbol and da ta

I G C

30.60~70
1- 2

M a y 18, 1966

c

(I'

defini t ion I m C r O S are a l so included.

transfer t h i s package in to t h e i r program.

Most users w i l l want to

3) Syntax recognizer FOPS. These provide for recursive ca l l ing of

subroutines which are usually thought of as recognizers f o r elements

of the syntax of the language under consideration. There are two,

one skipping on successful recognition, the other on unsuccessful.

For examining the consti tuents of the source l i n e two analogous

operations are available.

4) Error control routines. There i s an e r ror POP, which p r i n t s out

a message, c a l l s a routine t o c lear the compiler, and returns t o

the main loop of the compiler.

5) Code generation. The compile POP inser ts a word a t a specified

point on a program l i s t .

which the address of the word re fers t o another element of the

program.

a t a specified point i n another one.

A symbol tab le lookup routine which works on symbols of a rb i t ra ry

length, and a routine t o inser t new symbols in to t h i s tab le .

7) Read l i n e .

It also recognizes the special case i n

An operation is available fo r inser t ing a program l is t

6)

This routine reads one l i n e (up t o a carriage return)

from any f i l e .

of f i l e and recognizes l i n e feed as a l i n e continuation character.

If the f i l e is teletype, it allows the user a l l the f a c i l i t i e s

of the &ED l i n e e d i t .

It deals correct ly w i t h multiple blanks and end

8) Re-pass. This routine decomposes a source l i n e in to an in te rna l

It form which w i l l hopefully be more t rac tab le f o r the compiler.

assumes the ava i l ab i l i t y of a s t r ing storage area in to which it can

put ident i f ie rs , which it then looks up. It w i l l co l lec t f loa t ing

30.60.70
1- 3

May 18, 1966

poin t numbers as s t r i n g s and de l ive r them t o a user-provided

rout ine .

an i n t e r n a l i d e n t i f i e r or cause a t r a n s f e r t o a user-provided

rout ine .

Any charac te r may be t r e a t e d as i l l e g a l , ignored, provide

There i s considerable con t ro l over t h e treatment of blanks.

9) Input-output. There is a charac te r output rout ine which generates

a c a l l of t h e l i n e feed rout ine when it sees ca r r i age r e tu rn or

l i n e feed. The l i n e feed rout ine counts t h e number of phys ica l

l i n e s output and generates page spacLng and page headings every 55

l i n e s . A message p r i n t i n g rout ine i s a l s o ava i lab le .

10) I n i t i a l i z a t i o n . Frm parmeters supplied by the user t h i s rou t ine

assip;ns space for s<ynbol t a b l e and s t r i n g s torage, generates free

s torage l is ts for t h e f i v e word c e l l s used by the symbol table

rout ines , ass igns space f o r t he compiler 's s torage and t h e use r ' s

program, i n i t i a l i z e s var ious parameters and puts i n t o t h e symbol

t a b l e a l i s t of names and values supplied by the u s e r .

11) Panic cont ro l . This rout ine a c t s as an overlord, c l ea r ing the

e n t i r e state of t h e system and s e t t i n g up a fork for it t o run i n .

It responds t o panics out of the fork i n appropriate fashions.

Storage a l loca t ion .

program or s t r i n g s torage and takes appropriate nction t o obta in

12) The system checks for overflow of symbol t ab le ,

more s torage, c a l l i n g on user-provided rout ines as necessary.

13) Command recogni t ion. The user def ines a command t a b l e from which

t h e system w i l l recognize commands preceded by addresses i n the

QED form.

s,ymbolic are b u i l t i n t o t h e system.

A number of commands f o r p r i n t i n g and a l t e r i n g t h e

The remainder of t h i s manual is devoted t o a de ta i l ed descr ip t ion of CP. We

begin with storage a l loca t ion and other p a r m e t e r s and proceed t o a considerat ion

of t h e 13 system components ou t l ined sbove.

30.60.70
2- 1

May 18, 1966

2.0 Storage Allocation

(I:

The i n i t i a l i z a t i o n routine, GIN, uses the following parameters, which

must be provided by the user:

NOSYMS should contain the i n i t i a l s i z e of the symbol tab le .

H a l f t h i s number of words w i l l be allocated for the fixed

s i z e table and t h i s many f ive word blocks w i l l be created

LSS

ILCFS

TOP

BFS

LPROG

and put on a free storage l is t .

the system w i l l attempt t o obtain it automatically.

should contain the s i z e of s t r ing storage i n words.

The routine PA: w i l l be cal led i f &ring storage runs out.

If more space is needed

In t h i s case, if some s t r ings are no longer in use, a

garbage collection may be appropriate.

should contain the length of t he compiler free storage

in words. The system w i l l take the m a x i m u m of t h i s

number and 300 as the s i z e of t h i s storage area. Three

words frm t h i s area are used by each c a l l of CPL, and

three plus the number of l oca l variables by each c a l l of

RST or RSF. If more space is needed, the system w i l l

attempt t o obtain it autmat ica l ly .

contains the location from which free storage c e l l s w i l l

be allocated - down.

contains the location from which the fixed length symbol

tab le and the s t r ing storage area should be b u i l t up.

contains the i n i t i a l length of the program area. This

space is used fo r both compiled code and source language

tex t . If more space i s needed, the compiler w i l l attempt

t o obtain it automatically.

30.60.~(0
2- 2

May 18, 1966

The f igure on the next page depicts the arrangement of storage immediately

after in i t i a l i za t ion .

When such growth becomes necessary, the areas lower down must be moved.

therefore follows t h a t

The three areas at the top indicated by * can grow.

It

1) New symbols must not be created i n the middle of computation, i . e . ,

Th i s i s because movement of compiler free storage cannot after the pre-pass.

be to le ra ted i f there is anything in it.

2) The user must provide two storage allocation routines:

RmZOG is cal led with an address i n A and a displacement in B.

The routine should make sure tha t moving the par t of the

compiled program at or above the specified address by t h e

specified displacement w i l l leave everything in an

acceptable state. I .e. , it should relocate a , l l addresses

which refer t o t h i s par t of the program.

MS PACE is cal led w i t h a number i n A . The user must ensure

t h a t t h e system can move the beginning of t h e program,

given by BPROG, down by the specified amount.

There are two more user routines connected w i t h storage allocation.

APS is cal led after CP has assigned i ts permanent storage

(currently the symbol hash table) .

assign h i s permanent storage, s t a r t i ng at the location

i n EST+, and return the last location he uses i n A.

should be the s t r ing storage garbage col lector i f t h e

user wishes t o do a garbage collection when s t r ing storage

i s exhausted.

The user should

4

Otherwise he can put an e r ror routine there.

Gc

> W P : 1-1

EPROG: 1-1 >

ESTS :

BSTS :

CEPROG:

BPROG :

E=J >

n >

ESSP

ESS

khar addrf

O/

c. i

css khar addrf >

BSS I I . >

EST: n >

*BFS :
BST
0 >

5*N d SYMSW

MAX(ILCFS, 300)*

I +
. T
.............. I

AVAILABLF:

To
USER

.... LSS....

Symbol Table Free
Storage

Compiler Free Storage

Source Language Text

Program
A r e a

Compiled Program

Str ing Storage

Area Used

User Permanent Tables

Symbol Table Hash Table

Storage Allocation for CP. * indicates expandable area.

30.60.70
2- 3

May 18, 1966

After GIN has been called, BST and EST w i l l contain the boundaries of

the symbol table, BSS and ESS the word boundaries of s t r ing storage, SSP and

ESSP the character boundaries of s t r ing storage, BPROG and EPROG the boundaries

of the program area, RSFS the top of the symbol table f ree storage l is t . CSS

contains the last used character of s t r ing storage.

The following storage allocation and parameterization macros are i n the

user package:

1) DPS, which is called with a l i s t of opcodes and generates a se r ies

of words with labels of the form Zopcode which contain the opcode

with 0 address. Thus

DPS ADD,SUB

i s equivalent t o

ZADD ADD 0

ZSUB SUB 0

2) DP is for defining POPS.

DP ADD,55, SUB,54

i s equivalent t o

ADD om 5500000~,1

SUB OPD 5400000B,1

3) DSV is for defining symbol values

DSV SYMl,S, SYM2,6400B

i s equivalent t o

SYMl EQU 25

SYM2 EQU 64OOJ3

4) DV is for defining values

DV mc1,100, MC2,200

30.60.70
2-4

May 18, 1966

is equivalent t o

LOCl DATA 100

Loc2 DATA 200

5) DPOP is for defining POPS whose 1

DSV or EQU. Thus

DSV vpOP1,21, vpOP2,40

DPOP POPl,POP2

is equivalent t o

POP1 POPD 1210000OB,l

POP2 POPD 14000000B,1

slues have already been set

Note t h a t DPOP expects the symbol containing t h e POP number t o be

followed by t h e POP name.

6) DEF reserves storage

DEF A,B,C

is equivalent t o

$A ZRO 0

$B ZRO 0

$c ZRO 0

30.60.70
3- 1

May 18, 1966

3.0 Other Parameters

3.1 L i s t ing

If CODFIG i s negative, compiled in s t ruc t ions w i l l be l i s t e d after

they have been put i n t o the program. They are put onto the f i l e ind ica ted

by LISTF, which i s i n i t i a l i z e d t o 1. The format is one in s t ruc t ion per

l i n e , symbolic opcode and numeric address. If either index o r i n d i r e c t

b i t s are on, two d i g i t s ind ica t ing the state of these two b i t s w i l l

appear after the opcode. CODFIG i s i n CP temporary storage.

Opcode are taken from two t a b l e s c a l l e d OFTAB f o r codes 0 t o 77 and

POPTAB f o r codes 100 t o 177. The appropriate word is picked up and

p r in t ed as three charac te rs .

Each t i m e RDL is c a l l e d t o read a new l ine , it will type the

charac te r i n BLCHAR i f the input f i l e i s the t e l e type .

For a descr ip t ion of pagination, see sec t ion 7 below.

3.2 I n i t i a l i z a t i o n

The i n i t i a l i z a t i o n rout ine GIN, i n addition t o s e t t i n g up storage

as described i n the previous section, a l so sets various f l a g s and counters

t o the i r i n i t i a l values, requests a page heading, and starts o f f the page

numbering w i t h page 1.

associated w i t h i n i t i a l i z a t i o n i f it i s negative.

The f l a g BRFBEG w i l l suppress the typing

The rout ine IST, which i s ca l l ed by GIN, i n i t i a l i z e s the symbol table

from the s t r i n g INS.

of which may have e i ther of the following forms:

This s t r i n g contains a series of en t r i e s , each one

a)

b)

the character /, which ind ica tes t ha t the s t r i n g is finished;

a s t r i n g of charac te rs which w i l l be taken as a symbol t o be

looked up, followed by a comma, followed by any number of f i e l d s

30.60.70
May 18, 1966 3- 2

of the form

<let ter> <octal number>

followed by a semi-colon.

interpreted according t o the preceding l e t t e r as follows:

v se t first value word

W se t second value word

B

C

I s tore index indirect through STIDX $. number

For explanation of the terms v d u e word, name word and index,

see section 5.1.

STIDX i s a table used by I f i e lds as indicated above.

SETUP i s a user routine which i s called before the processing of

each new source l i ne .

The octalnumbers are collected and

se t top 8 b i t s of f irst name word

se t top 8 b i t s of second name word

To start up CP, c a l l GIN and then transfer t o RUBOUT a f t e r

performing any other in i t ia l iza t ion required by the particular

language being implemented.

3.3 Pre-pass

For a discussion of the meaning of the parameters l i s t ed here, see

section 8 below:

CHTAB character table

ICTAB i n i t i a l character table

PPSET , pre-pass in i t ia l iza t ion

PPNL number lookup

mm i l l e g a l character e x i t

IEOS internal identification of end of statement

30.60.70
3- 3

May 18, 1966

(1;

3.4 Errors

If the fork control logic is being used

MEhWRP is the location t o which control w i l l go a f te r a memory

t rap;

i s the location t o which control w i l l go after an

i l l e g a l instruction t rap.

is called from a few places when CP runs into serious

trouble. T h i s i s a disaster .

is called when a c a l l of GC returns without skipping.

I m p

RJRR

OVFTxlW

3.5 The Executive

For a discussion of these parameters, see section 10.

BCT beginning of command table

ECT end of command table

FSTAT f ind statement

3.6 Miscellaneous

The l ine ed i t reads characters from SEIFN and writes them on SEOFN.

These locations are bu i l t into the system and se t t o 0 and 1 respectively.

A user can, i f he wishes, put them i n h i s temporary storage and change them.

TCFIM is the address of a message.

CERRX pops) w i t h addresses smaller than t h i s w i l l be

prefixed by t h i s message.

Error comments (address of

3.7 POP Addresses

A t the very beginning of CP is a collection of EQU's which define

the values of the various POPS, The user w i l l need t h i s information i f he

I
I

30.60.70
3-4

May 18, 1966

is t o use these POPS i n h i s own program. He m a y a l t e r the assignments

t o su i t h i s fancy.

3.8 POP Transfer vector

After a system which includes CP has been loaded, the POP t ransfer

vector must be transcribed into a permanent table, from which it can be

rewritten by G I N whenever the system i s s tar ted.

w i l l do th i s , returning w i t h a BRS 10.

A t ransfer t o FSTART

c,

I ” I

30.60.70

M a y 18, 1966
4,- 1

440 syntax Analysis and Code Generation

4 .1 Recognizers and Comparers

syntax analysis i n CP i s done by recursive ca l l s of routines

called recognizers.

grammer; the system provides only two recursive c a l l POPS:

RST

The design of recognizers i s l e f t t o the pro-

recognize and skip i f t rue

The POP c a l l s the routine addressed.

beginning of t h i s routine a l i s t of addresses terminated w i t h a -1

It expects t o find a t the

I word. The contents of each word addressed by t h i s l i s t is saved on a

l inear stack called RPL, together w i t h the address of the ca l l , the

address of the recognizer, and the input pointer LBLOC. Control then

goes t o the word a f t e r the -1.

A recognizer returns w i t h a t rue ex i t by going t o T . This causes

a l l the saved words except LBMC t o be restored and sends control t o

the second location a f te r the RST which called it. A transfer t o F

i s exactly the same, except t h a t the input pointer i s restored and

control goes t o the first location a f te r the RST.

The addresses at the beginni,ig of the recognizer define the loca l

variables of the routine.

RSF recognize and skip i f f d s e

i s a lso available.

P a r t of the user macro package is two macros for cal l ing recognizers:

recognize and branch i f t rue RBT A, B

cal l s recognizer A and branches t o B i f it returns t rue .

number, it executes a CERRX CERRB instead of branching.

recognize and branch if fa lse

If B i s a

RBF

is the other macro.

30.60.70
4- 2

May 18, 1966

During ana lys i s , LBLOC po in t s t o the cu r ren t element *of the input

l i n e . The POP

CST compare and sk ip i f t r u e

compares t h i s element w i t h the word addressed and sk ips i f they match.

The complementary operat ion i s

CSF compare and sk ip i f false

The macros are

CBT and CBF

4 . 2 Compiling Code

Code i s generated w i t h a POP c a l l e d CPL. CP maintains, i n i t s

s tandard form, two lists onto which code can be generated. These are

headed by ICL and IFCL and cons i s t of three word c e l l s .

of each c e l l i s e i t h e r 0 or a poin ter t o the next word, the second i s

The first word

t h e compiled in s t ruc t ion , and the t h i r d is -1. Ins t ruc t ions are put

onto a l i s t w i t h the POP CPL, whose ac t ion i s i l l u s t r a t e d i n the f igu re

on the next page. The ins t ruc t ion t o be compiled i s taken from the A

r e g i s t e r and pu t i n t o a new l is t c e l l which is inse r t ed j u s t after the

c e l l addressed by the argument of the POP.

New l i s t c e l l s are assigned downward from the t o p of t h e compiler

free storage area, while t he recognizer s t ack grows up from the bottom.

When they co l l i de , the f r e e s torage a rea i s expanded as described i n

the last sec t ion . Both lists and s t ack are r e s e t at the beginning of

each statement. The programmer therefore need not be concerned about

l o s ing t r a c k of l i s t c e l l s .

The f a c t t ha t code is generated onto a l is t makes it easy t o

rearrange it and t o maintain complex r e l a t ionsh ips between the order of

PL: c1

MCL: C2

(a) Program l i s t and po in te r before execution of

LDA OP4
CPL MCL

PL: c1

MCL: C4

(b) Program l is t and po in te r after t h i s CPL

FIGURE 1: Action of CPL

I ,

30.60.70

May 18, 1966
4- 3

elements i n the source l i n e and the order of the cc l e they generate.

A macro c a l l e d C 1 is i n the user package.

c1 A, B

i s equivalent t o

LDA ZA

MRG B

CPL MCL

That is, MCL i s used as the poin te r t o the place at which code is

cu r ren t ly being compiled.

word containing the address. It is assumed t h a t the c e l l ZA has been

constructed t o hold the opcode A .

A may be thought of as the opcode, B as a

Also p a r t of the user package are macros DP t o def ine opcodes

and DPS t o c rea t e the Z-locations t o hold them. Examples:

DP ADD,55, m , 5 4

DPS ADD,SUB

In order t o f a c i l i t a t e r e l a t i v e addressing within the code, a gimmick

has been put i n t o CPL. When t h i s FOP receives an in s t ruc t ion whose address

po in t s t o a c e l l on a program l i s t , it changes tha t address t o 0.

address of the in s t ruc t ion i n the c e l l pointed t o is changed t o the

address of the c e l l being constructed. That is, a backwards reference

The

i s changed i n t o a forward reference.

the program l i s t sees such an address, it converts the forward reference

i n t o a r e l a t i v e forward address, i . e . , i n t o the d i f fe rence between the

f i n a l loca t ions of t h e in s t ruc t ion w i t h t h e forward reference and t h e one

being referred t o . This computation is done w i t h the subroutine COUNT,

which r e tu rns the number of c e l l s between the l is t c e l l addressed by A

When the loop i n CS which t r ansc r ibes

30.60.70
4-4

May 18, 1966

and t h a t addressed by B, p lus 1, i n A.

not counted.

Ce l l s with second word =-1 are

The user must provide a b i t t a b l e with one b i t f o r each of t h e 128

poss ib l e opcodes.

w i l l be exempted from t h i s test f o r r e l a t i v e reference.

of t h e first word of t h e t a b l e should be RRTAB; it w i l l occupy 6 words.

If' a b i t i n t h i s t a b l e is on, t he corresponding opcode

The address

CPL and CS w i l l recognize an address as r e f e r r i n g t o t h e program

l is t if it is bigger than t h e contents of EPROG and i f t h e second following

word is -1.

second value word of t h e c e l l it compiles.

This arrangement i s successfu l because CPL pu t s -1 i n t o t h e

To c r e a t e new lists, the user macro INIT is ava i lab le . INIT M makes

a r ? w c e l l , c l e a r s i t s contents t o 0, and pu t s i t s address i n M.

To i n s e r t an e n t i r e l i s t i n t o another one, the POP MERGE i s ava i l ab le .

MERGE M i n s e r t s the l i s t whose first c e l l is addressed by A after t h e c e l l

addressed by M. M is changed t o poin t t o the last c e l l of t he in se r t ed

l ist . A CPL i s equivalent t o an INIT, followed by an e x p l i c i t s t o r e of

the b ina ry word t o be compiled, followed by a MERGE.

To sequence down a list, t h e POP LVDI (load value double and increment)

is ava i l ab le . LVDI M r e tu rns without skipping i f M po in t s t o t h e last

c e l l of a l ist .

t h e second and t h i r d words of t h i s a l l i n t o AB, and sk ips .

Otherwise it changes M t o po in t t o the next c e l l , pu t s

4 .3 The Compiler LOOP

The main loop of t h e compiler starts at CS. It does the following

th ings :

a)

b)

c a l l s RDL t o read a l i n e (sec t ion 6)

c a l l s t he user rout ine SETUP, which may do any i n i t i a l i z a t i o n

it l i k e s

30.60.70
4-5

May 18, 1966

c) c a l l s t h e pre-pass GNE

d)

e)

c a l l s t h e user recognizer STAT, expecting it t o r e tu rn t r u e

pu t s compiled code and t e x t i n t o program area unless t h e

statement is d i r e c t (see sec t ion 10).

f) loops

Step (e) involves tak ing t h e in s t ruc t ions o f f t he l i s t ICL i n order

and adding them t o t h e program a rea at t h e address i n PLOC. If CODFLG

is negat ive each in s t ruc t ion w i l l be l i s t e d (see sec t ion 3.1).

4.4 Compiler Errors

When t h e compiler d e t e c t s an e r ro r , it can c a l l on s tandard e r ro r -

hrndl ing machinery with t h e FOP CERRX.

telety-pe, t h e offending statement is l i s t e d on t h e f i l e LISTF. The

address of t h e CERRX is then examined.

it p r i n t s t h e message s t a r t i n g at the address, which should fol low the

conventions of TMSG (sec t ion 8). Otherwise, it p r i n t s t he message

a t TCFIM (which i s usua l ly

If t h e input device i s not t h e

If it is g rea t e r than TCFIM,

THE CORRECT FORMAT IS)

and then proceeds as before .

After p r i n t i n g t h e e r r o r message, the FOP re tu rns t o t h e main loop

at CS.

If DEBUG is negative, t h e o c t a l address of the CERRX is p r in t ed

after t h e e r r o r message.

Refer t o the discussion (i n sec t ion 4.1) of numeric branch addresses

f o r t h e recognize and compare macros.

i ' ,

30.60.70
5 - 1

May '-8, 1966

'I

5.0 Symbol Tables and l b i t i a l i z a t i o n

5-1 Struc ture of t h e Symbol Table

The symbol t a b l e i n CP i s a rather funny ob jec t which can be thought

of as an e l a s t i c hash t a b l e .

BST and EST) ca l l ed t h e hash t ab le , and a co l l ec t ion o f f ive word c e l l s

a t tached t o t h e hash t a b l e by po in te r s .

t o one of these f i v e word c e l l s . The first word of t he c e l l i s a

poin ter .

t o p 8 b i t s of each of these words are ava i lab le t o t h e user .

words are value words and completely a t t he use r ' s d i sposa l . The symbol

t a b l e may be thought of as a device f o r assoc ia t ing with a s t r i n g an

address c a l l e d t h e index. This address is always the address of t h e

first value word; t h i s number is returned by t h e lookup rout ine .

It c o n s i s t s of a f ixed length t a b l e (between

Each symbol i n the t a b l e belongs

The next two words contain a s t r i n g po in te r t o t h e symbol; t h e

The last two

Each word of the hash t a b l e is e i t h e r 0 or a po in te r t o t h e head

of a l i s t o f t hese f i v e word c e l l s . When a symbol is looked up, a

number less than t h e length of t he hash t a b l e is computed from t h e s t r i n g .

This number is c a l l e d a hash code. The word of t h e hash t a b l e

corresponding t o the hash code i s picked up and t h e l i s t which it heads i s

searched f o r t h e symbol.

up i s found on t h i s l i s t , then t h e symbol is already i n t h e t a b l e and i t s

index can be returned. Otherwise a new c e l l must be added t o t h e l i s t

and i n i t i a l i z e d with a po in te r t o the s t r i n g and 0 value.

5.2 lookup and Inse r t ion Routines

If a s t r i n g i d e n t i c a l t o the one being looked

To look up a symbol, put a s t r i n g po in te r t o it i n AB and c a l l

LKUPN.

i n X .

s t i l l i n AB.

If t h e symbol is i n t h e t a b l e , L;KupN sk ips and r e tu rns the index

Otherwise it r e t u r n s without a sk ip and with the s t r i n g po in te r

,
30.60.70

5-2
May 18, 1966

To i n s e r t 5 symbol, c a l l INSN immediately a f t e r an unsuccessful

c a l l of LKSIPN without d i s tu rb ing the c e n t r a l r e g i s t e r s .

the index i n X, j u s t as IxuF1\J does.

5.3 I n i t i a l i z a t i o n

INSN r e tu rns

The i n i t i a l i z a t i o n rout ine G I N performs a number o f func t ions

connected with s torage a l loca t ion , f o r which see sec t ion 2. It a l so

calls IST, which i n i t i a l i z e s t h e symbol t a b l e as described i n sec t ion 3.2.

30.60.70
6- 1

May 18, 1966

6.0 Input

The rout ine RDL reads one l i n e i n t o a. source l i n e bu f fe r c a l l e d SBUF

which has room f o r 300 charac te rs . It expects t o f i n d a s t r i n g poin te r t o

t h e o ld conten ts of SBUF i n SIP and leaves a poin te r t o the new contents i n

SIP and also i n IP.

RDL reads from t h e f i l e spec i f i ed by INFIL. If t h i s i s not t h e

teletype, no output i s generated by RDL. Multiple blanks are c o r r e c t l y converted,

and an end of f i l e charac te r sets INFIL back t o t h e t e l e type . A l i n e feed is

assumed t o be followed by a, c a r r i q e r e tu rn and l i n e feed; t he two charac te rs

following a l i n e feed are the re fo re ignored. A ca r r i age r e tu rn i s assumed t o

be followed by a l i n e feed. This character , and all charac te rs intervening

betweer it and t h e preceding car r iage re turn , are ignored.

If the t e l e t y p e is the inpiit medium, a l l the f a c i l i t i e s of t he &ED

l i n e e d i t are made ava i lab le by RDL. The l i n e being ed i ted i s assumed t o

be pointed t o by SIP. This means t h a t , unless t he user takes s p e c i a l ac t ion ,

t h e l i n e being ed i t ed w i l l always be the one previously typed i n .

refers o f course t o the l o g i c a l l i n e , i . e . , t he s t r i n g of charac te rs preceding

t h e first ca r r i age r e t u r n (or D Line feed i s in t e rp re t ed as a

cont inuat ion character and causes car r iage r e tu rn and l i n e feed t o be

p r in t ed .

appl ica t ion .

"Line"

C o r Fc) .

Qc has been modified so t ha t it de le t e s one phys ica l l i n e a t each

30.60.70
7-1

M4y 3, 1966

c;
7.0 Output

The system generates l i n e feeds only i n a rout ine c a l l e d CRW, which i s

responsible f o r p r i n t i n g ca r r i age retiurn and l i n e feed and f o r advancing t o

a new page i f necessary ("pr int ing" here and below means "wri t ing on OUTFIL").

The l i n e on the cur ren t page i s kept t r a c k of i n LINCNT, which starts a t 5 5 .

The page number is kept i n PAGENO. If the symbol PAGES i s >O during assembly

of CP, G I N w i l l request from the user a p q e heading which it w i l l p u t i n HBUF.

A po in t e r t o t h e heading is kept i n HEAD.

W i l l be p r in t ed a t t h e top of each page.

generate ca r r i age r e t u r n and l i n e feed.

The heading and the pa,ge number

If PAGES i s <O, CRLF will simply

A message output rout ine c a l l e d TMSG is c a l l e d with the (word) address

of t h e message i n X.

OUTFIL u n t i l it sees a / and r e t u r n s ,

l i n e feed.

It writes the charac te rs i n t h e message s t r i n g onto

It will p r i n t $ as car r iage r e tu rn and

A charac te r output rout ine c a l l e d CHOUT is i d e n t i c a l t o C I O OUTFIL

except t h a t it c a l l s CRLF whenever it sees a ca r r i age r e tu rn or l i n e feed.

30.60.70
8-1

May 18, 1966

8.0 Be-Pass

If t h e symbol PREPAS i s >0, the pre-pass rout ine GNE w i l l be assembled

i n t o CP.

and then performs a rather e labora te ana lys i s of t h e input l i n e , which it

f i n d s a s t r i n g po in te r t o i n IP. The r e s u l t is a s e r i e s o f i n t ege r s s t a r t i n g

at UUF. The last of t hese in t ege r s is pointed t o by LBLOC when GNE re turns ,

although CS resets U L O C t o I;BUF and t h e CST and CSF FOPS assume tha t it

p o i n t s t o t h e element of t he converted source l i n e cu r ren t ly under considerat ion.

When ca l l ed , t h i s rou t ine c a l l s t h e user i n i t i a l i z a t i o n rou t ine PPSET

GNE works with a 64 word t a b l e c a l l e d CHTAB which it indexes by t h e

i n t e r n a l code f o r t he charac te r it i s processing. Characters l a r g e r than 77*

are regarded as i l l e g a l , except f o r l i n e feed, which is ignored, and ca r r i age

r e tu rn , which causes GNE t o add IEOS t o UUF and. re turn . Each one word en t ry

i n CIflAB s p e c i f i e s t he t reatment t o be accorded a charac te r . This word i s

organized i n t h e following way:

B i t s Function

0- 2

3 Keep following blank

4 Keep preceding blank

5

6

7 I l l e g a l

8 Ignore

9 Unused

10- 23

Indexes IC13AB f o r t r a n s f e r on i n i t i a l charac te r i f #O

Keep following blank i f next character approves

Keep following blank i f previous charac te r approves

Take as i n t e r n a l i d e n t i f i e r i f .(4000.

t o t h i s address

Otherwise transfer

30.60.70

May 18, 1966
8- 2

If the first three b i t s of the CHTAB entry for the first character of the

l i n e are non-zero, GNE does an indexed branch t o Ic1IAB.

There is a macro cal led CT which is par t of the user package.

This macro i s convenient for constructing the character tab le used

by GNE. Its arguments have the following significance (avoid

omitting them i n the middle, since Arpas does not l i k e t h i s)

1 B i t s 0-23. M a y be external. If /, ignore. If *, i l l e g a l

2 Blank treatment. Tno characters, first f o r preceding blank,

second f o r following. K=keep, C-conditionally keep, N=don't keep.

3 I n i t i a l code

GNE c a l l s a routine called CHAR t o get i t s characters from the source

s t r ing , which i s pointed t o by IP. This routine ju s t does a G C I , returning a

carr iage return i f the s t r i n g i s exhausted.

working on in to NC and keeps the preceding character i n CC.

GNE puts the character it i s

The user citn cause processing of cer ta in characters t o cause t ransfers

There are several out of GNE by put t ing the t ransfer addresses in to CHTAB.

standard points where he can re-enter GNE:

G N E l l t o process a name.

read (i.e., should be in NC).

and dots f o r as long as possible, look up the name and put

i t s index in to LBW.

t o process a number.

GNE will col lec t d ig i t s , one dot, a d one E, possibkd followed

by a + or - <and inore d ig i t s .

with a s t r i n g pointer t o the number i n AB.

return an ident i f icat ion f o r the number, which w i l l be put i n LSW.

GNE will recover the s t r ing storage used fo r the number.

The first character should have been

GIVE w i l l co l lec t let ters, d i g i t s

GNE12 The first character should have been read.

It w i l l c a l l a user routine, PPNL,

This routine shonlz

30.60.70
8-3

May 18, 1966

GNEL t o s t a r t a new l i n e - PPSET will be called again.

rese t and processing w i l l continue.

fo r main loop. The next character should be i n NC.

w i t h a,n in te rna l i den t i f i e r in A. It will be stored and C M called

for the next character.

t o c a l l CHAR f o r the next character and loop.

Everything w i l l be

Gm3

GNE7

G N E ~

When the pre-pass needs t o write characters in to s t r ing storage, it uses

The address given a POP cal led WC, which acts l i ke WCI but takes no address.

i n CSS i s incremented by 1 and the character i s writ ten there .

jw.0u. (V
9- 1

May 18, 1966

(1;

ci

9.0 Panic Control

If c o n t r o l 5s t r ans fe r r ed t o RUBOUT, t h e system w i l l c l e a r a l l input-

output, reset the input and output f i l e s t o t e l e type and the echo t a b l e to

2, w a i t f o r the user t o type a charac te r , and start up a fork i n which RDL

is c a l l e d from the main loop a t CS.

If a panic occurs out of t h i s fork , it is checked f o r t,ype. I l legal

i n s t r u c t i o n traps p r i n t

ILLEGdlL INSTRUCTION EXECUTED AT XXXX

and t r a n s f e r t o IITRP. Memory t r a p s p r i n t

MEMORY TRAP

and t r a n s f e r t o MEMTRP. A RRS 10 causes t h e fork t o be r e s t a r t e d as above

after r e s e t t i n g t h e echo t & l e t o 2 (break on c o n t r o l c h w a c t e r s on ly) but

without any o ther i n i t i a l i z a t i o n .

A rubout causes RUNFLG t o be checked. If it i s -1, it i s reduced t o -2,

PAMFLG i s set t o -1, and t h e program i s r e s t a r t e d . If RUNFIG i s -2, c o n t r o l

goes t o RUBOUT.

the same ac t ion is taken as f o r RUNFIG = -1. If the program i s wai t ing f o r

I /O, CCLR i s c a l l e d and con t ro l zoes t o RUBOUT.

If it i s p o s i t i v e and the program i s not wai t ing f o r I /O ,

The i d e a behind a11 t h i s i s tha t RUNFIX; i s pos i t i ve during compilation

and -1 while the program i s running.

t o be dismissed, s ince it may have po in te r s i n a bad s t a t e . €fence, PAITFIG

i s set. It can be checked at the next convenient po in t i n the compiler o r

running program.

is compiled.

have occurred while t h e program i s running, it seems des i r ab le t o i n t e r r u p t .

A running propam or compile o w h t not

I n p a r t i c u l a r , it i s checked by CS a f t e r each statement

However, i f the compiler i s wai t ing f o r 1/0 or i f two rubouts

The panic table starts a t FT. FTA, FTB and FTX r e f e r t o the c e n t r a l

r e g i s t e r l o c a t i o n s , F T M t o the loca t ion ind ica t ing t h e s t a t u s of the fork.

30.60.70
May 18, 1966 9- 2

To use t h e program without the fork, change RBOUT3 from BRS 9 t o

BRU DSTRT.

I '
30.60.70

10- 1
May 18, 1966

10.0 The Executive

The CP executive maintains the source and object program. It accepts

More commands can be commands which allow the user t o change the program.

added.

A CP command can be preceded by 0, 1 or 2 arguments. Each argument is

the address of a logical l i ne (s t r ing of characters bounded by carriage returns)

i n the source program.

displacements. The base may be

-
This address is formed out of a base and any number of

. referring t o the current l ine

:string: referring t o the first l i ne a f te r the current one which begins

with the specified s t r ing followed by a character which i s not

a l e t t e r or d ig i t . The source program i s regarded as a ring

fo r t h i s search.

i s l i k e the : construction except tha t any occurrence of the

s t r ing w i l l do.

[s t r ing] -

The displacements must be decimal integers. They are separated by +, -, or

spaces (equivalent t o +). The arguments are separated by commas.

Each argument, once recognized, occupies f ive words i n ARGBUF. The f i r s t

two words are a s t r ing pointer t o the text of the statement, the next two a

s t r ing pointer t o the labe l of the nearest preceding labeled statement, and

the l a s t the distance of t h i s statement. A routine called FTARG generates

an error i f there are no arguments and copies a single argument t o make two.

The user must supply a routine called FSTAT which, called with a s t r ing

t

pointer i n AB and a number i n X, w i l l return i n AB the first and last c e l l s

occupied by the code for the statement specified by the given label and

displacement.

Commands are specified by a command table which the user must provide.

The par t of the command table b u i l t in to CP is l i s t ed i n the CP temporary

6

30.60.70
10- 2

May 18, 1966

storage package.

be alphabetized. Each entry has the form:

The table begins a t BCT and ends jus t before ECT. It must

several words containing the charactemof the command, the

l a s t f i l l e d out by 200 characters.

a word with the sign b i t s e t containing the address t o go t o

when the command is recognized.

When a command i s recognized, which occurs when enough characters have been

typed t o identify it, the remainder of the commdnd i s types out unless QCKFLG

is negative. There i s a macro called CD for defining commands. Its use i s

i l l u s t r a t ed by the definit ions of the bui l t - in commands.

The bui l t - in commands and the i r functions are as follows:

APPEND

CHANGE

CODE

DE.WTE

EDIT

INSERT

MODIFY

NOCODE

PRINT

QUICK

0 args

1 or 2 args

0 args

1 or 2 args

1 arg

s t a r t s input a t the end of the current program

deletes the specified l ines and accepts input
t o replace them

causes the code produced by the
be l i s t ed

deletes the specified l ines

compiler t o

types the specified l ine, delet-s it, makes it the
l ine being edited and accepts input t o replace it

accepts input t o go before the specified l i ne

l ike ed i t but does not type

inverts CODE

0,l or 2 args pr in ts the specified par t of the source program

0 args suppresses command completion

READ FROM 0,1 c92F
2 args

accepts input f'rom a f i l e specified a f t e r words
and puts it a t the end o r before the specified
statement

VERBOSE 0 args inverts QUICK

WRITE 0,l or 2 args l ike PRLNT, but on a specified f i l e

30.60.70
10- 3

May 18, 1966

0

/ 0,l or 2 args l ike PRINT

t 0 args pr in t preceding Line

l i ne feed 0 args pr in t next l ine

The routine OKTOCO is available t o require tha t the next character be a

dot, and t o output a carriage return a f te r it.

The labe l CPEXER is the e r ror ex i t fo r the exec. It pr in ts ? and goes

t o get another command.

The entry point t o the executive is EXEC. This is the place t o go when

the compiled program returns from execution and wants to return control to

the executive.

A very useful routine for copying s t r ings i s b u i l t in to CP. The sequence

IDA =PTRl

IDB =m2

SBRM COPYST

w i l l cause the s t r ing specified by the pointer a t PIT1 t o be copied onto the

end of the s t r ing i n FTR2. The second word of PTR2 w i l l be increased by the

appropriate amount. The two words a f te r the l a s t word copied into w i l l be

destroyed. I f the s t r ings overlap, only downward copying w i l l work, since

the copying i s done from the beginning of the s t r ing t o the end.

This routine moves the s t r ings word by word, using s h i f t s and mctsks.

It i s about 20 times as f a s t as a GCI-WCI loop.

The executive interprets all input (except a f te r INSERT, CHANGE, APPEND,

EDIT and MODIFY commands) as commands with preceding arguments, except where

the f irst character is a blank.

statement, which is analyzed and compiled.

input buffer, s ta r t ing a t LBUF.

In t h i s case the input is taken t o be a d i rec t

The compiled code is put into the

When the statement has been compiled, control

30.60.70

May 18, 1966
LO- 4

goes t o the address XDS which must be supplied by the user.

When input is being accepted a f te r an INSERT, CHANGE, APPEND, EDIT or

MODIFY command, each l ine (terminated by carriage return) i s taken t o be a

statement which is immediately compiled. Any er ror gives r i s e t o an e r ror

comment and prevents code from being generated. During input of each l ine ,

the l i ne last input, or the one jus t designated by an EDIT or MODIFY command,

i s being edited, and all Q,ED control characters apply, with the exception

tha t an i n i t i a l DC indicates the end of input and sends control back t o

the exec. This is the 0nl.y way, aside from rubout, t o terminate input.

Input a f t e r an EDIT or MODIFY is not automatically res t r ic ted t o one

statement.

1 c

A- 1

APPENDIX A: CP Parameters -- Symbols which must be provided by the user.

NAME SECTION TYPE DESCRIPTION

NOSYMS

LSS

ILCFS

TOP

LPROG

BFS

INS
SETUP

STIDX

CHTAB

PPSET

1cm
PPNL

ILCHAR

IEOS

APS

RPROG

MS PACE

GC

FSTAT

BCT

ECT
TCFIM

BLCHAR

OPTAB
POFTAB

OVFLOW

IITRP
MEMTRP

RERR

2.0

2.0

2.0

2.0

2.0

2.0

3.2

3.2

3.2

8.0
8.0

8.0

8.0

8.0
2.0

2.0

2.0

2.0

10.0

10.0

10.0

4.4
3.1
3 . 1
3.1
3.4
3.4
3.4
3.4

8.0

v
v
V
V
v
v

String

S

T

T

S

T

S

A

V

S

S

S

S

S

T

T

T
v
T

T
S

A

A

S

Number of symbols

Length of s t r ing storage

I n i t i a l length of compiler free storage
Top of available memory

I n i t i a l length of program area

Bottom of available memory

In i t ia l iza t ion for symbol table

Routine called before compiling each source
l ine

Table for storing addresses of s t r ings
being in i t ia l ized

Character table for pre-pass

Routine called before pre-pass on each
source l ine

I n i t i a l character table for pre-pass

Routine called w i t h each number by pre-pass

Go here on i l l e g a l character

Internal ident i f ie r for end of statement

Assign permanent storage

Relocate program
Make space available

String storage garbage collector

Find statement

Beginning of command table

End of command table

Dividing address for error messages
Character typed by exec

Table of mnemonics for opcodes

Table of, mnemonics for popcodes

Called if GC returns too l i t t l e free storage

Go here on i l l e g a l instruction t rap

Go here on memory t rap
Called on unexpected errors

%

Go here t o execute direct statement XDS 10.0 A

RRTAB 4.2 T B i t table t o suppress re la t ive reference checking

B- 1

APPENDIX B: Symbols provided by CP to the user .

NAME SECTION TYPE DESCRIPTION

RST

RSF

CST

CSF

ClZ
MERGE

LVDI

WC

CERRX

LKum
INSN

BST

EST

G I N

FSTART

RDL

CHAR

GNE

G N E l

GNE3
GNE7
GNE8
G N E l l

GNE12

LBLOC

LBW

SBUF

T

F

COUNT

INDL

m c
ICL

IFCL

MCL

4 .1
4 . 1
4 .1
4 . 1
4.2
4.2
4.2
8.0
4 .3
5 . 2
5 . 2

5 .I
5
3.2
3.8
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0

8.0
6.0

4 .1

4 . 1
4 . 1
4 .2
4 . 2
4 .2
4 .2
4 .2
4.2

P
P
P

P

P

P
P

P

P

S

S

T

T
S

A

S

S

S

A

A

A

A

A

A

v
T

T

A

A

S

S

v
v
V
v

Recognize and s k i p i f t r u e

Recognize and sk ip i f false
Compare and sk ip i f t r u e

Compare and s k i p i f false
Compile in s t ruc t ion

Merge one program l is t i n t o another
Sequence down program l is t
Write charac te r on s t r i n g s torage

Compiler e r r o r

Look up name

I n s e r t name

Beginning of symbol table

End of symbol t a b l e

General i n i t i a l i z a t i o n

F i r s t start; t r ansc r ibe POP t r a n s f e r vector

Read a l i n e

Get a charac te r f o r pre-pass

The pre-pass rout ine

To start over on a new l i n e

Main loop of pre-pass

Return i n t e r n a l i d e n t i f i e r t o pre-pass

Call CHAR and go t o main loop

Process name

Process number

Input po in te r

Input bu f fe r

Source l i n e bu f fe r

True re turn from recognizer

False r e tu rn from recognizer

Count i n s t ruc t ions i n program l is t
I n i t i a l i z e a program l is t
Location counter i n program buf fe r

I n i t i a l word of the standard program l is t
Init ial word of another standard program l is t

S t a r t s equal t o ICL

B- 2

NAME

cs
CSA

RUBOUT

DSTRT

FT
FTA

FTB

FTX
FTM
CHOUT

CRLF

TMSG

mIL

OUTFIL

LISTF

LINCNT

PAGEN 0

HBUF
EXEC

CE'EXER

BPROG

EPROG

CEPROG

BSTS

ESTS

ARGBUF

DEL

FTARG

OKTOGO
COPYST

PANFlG

RuNFL(;

DEBUG

BRFBl3G

CODFIG

SECTION

4.2

4.2

9.0

9.0

9.0

9.0
9.0
9.0
9.0
7.0
7.0

7.0
6.0

7.0

3.1
7.0

7.0
'7.0

10.0

10.0

2.0

2.0

2.0

2.0

2.0

2.0

10.0

10.0

10.0

10.0

9.0
9.0

10.0

3.2

3.1

TYPE

A
A

A

A

v
v
v
v
v
S
S

S
v
v
v
v
v
T
A

A

T

T
T

T

T
T

S

S

S

S
v
v
v
v
v

DE SCR IFT ION

Beginning of compiler loop

P r in t car r iage return, then go t o CS
Set up fork and go t o exec

Address t o simulace BRS 9 f o r debugging

F i r s t word of fork t a b l e (program counter)

Second word of fork t ab le (A r e g i s t e r)

Third wor& of fork t a b l e (B r e g i s t e r)

Fourth word of fork t a b l e (X r e g i s t e r)

Seventh word of fork t a b l e (s t a t u s)

P r in t character, t r e a t i n g c f and If s p e c i a l l y

P r in t car r iage r e tu rn and l i n e feed. Paginate
i f necessary

Type message

Input f i l e

Output f i l e

Lis t ing f i l e

Line count on t h i s page

PaEfe number
Heading buf fer

Entry point t o exec

CP exec e r r o r en t ry

Beginning of program area

End of program area

Current end of program

Beginning of source program (character address)

End of source program (character address)

Argument bu f fe r

Delete subroutine

Force two arguments

Wait f o r dot

Copy s t r i n g

Panic (rubout) flap;

Program running f l a g

Debug f l a g
Brief beginning f l a g

Code l i s t i n g flap;

Types: A address t o which c o n t r o l may be t r a n s f e r r e d

P PQP

S subrout ine called w i t h SBRM

T table

V s i n g l e word whose va lue is of concern

